Search results for "double-beta decay"
showing 10 items of 32 documents
The NUMEN project @ LNS: Status and perspectives
2017
The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β−β− decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low (a few nb), being the tota…
Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS
2019
Abstract The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ). In this view measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections are performed with high-accuracy. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β-β- decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challe…
Experimental study of $^{100}$Tc $\beta$ decay with total absorption $\gamma$-ray spectroscopy
2017
International audience; The β decay of Tc100 has been studied by using the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ-ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximatio…
Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors
2010
We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of $\rm ^{207}Bi$ and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.
Long-lived particles at the energy frontier: the MATHUSLA physics case
2019
We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …
Consistent large-scale shell-model analysis of the two-neutrino ββ and single β branchings in 48Ca and 96Zr
2020
Abstract Two-neutrino double-beta-decay matrix elements M 2 ν and single beta-decay branching ratios were calculated for 48Ca and 96Zr in the interacting nuclear shell model using large single-particle valence spaces with well-tested two-body Hamiltonians. For 48Ca the matrix element M 2 ν = 0.0511 is obtained, which is 5.5% smaller than the previously reported value of 0.0539. For 96Zr this work reports the first large-scale shell-model calculation of the nuclear matrix element, yielding a value M 2 ν = 0.0747 with extreme single-state dominance. These matrix elements, combined with the available ββ-decay half-life data, yield effective values of the weak axial coupling which in turn are u…
Searching for New Physics in two-neutrino double beta decay with CUPID
2021
Abstract In the past few years, attention has been drawn to the fact that a precision analysis of two-neutrino double beta decay (2υββ) allows the study of interesting physics cases like the emission of Majoron bosons and possible Lorentz symmetry violation. These processes modify the summed-energy distribution of the two electrons emitted in 2υββ. CUPID is a next-generation experiment aiming to exploit 100Mo-enriched scintillating Li2MoO4 crystals, operating as cryogenic calorimeters. Given the relatively fast half-life of 100Mo 2υββ and the large exposure that can be reached by CUPID, we expect to measure with very high precision the 100Mo 2υββ spectrum shape, reaching great sensitivities…
Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array
2013
NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent e…
Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture
2014
[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…
The first large-scale shell-model calculation of the two-neutrino double beta decay of $^{76}$Ge to the excited states in $^{76}$Se
2022
Large-scale shell-model calculations were carried out for the half-lives and branching ratios of the $2\nu\beta\beta$ decay of $^{76}$Ge to the ground state and the lowest three excited states $2_1^+$, $0_2^+$ and $2_2^+$ in $^{76}$Se. In total, the wave functions of more than 10,000 intermediate $1^+$ states in $^{76}$As were calculated in a three-step procedure allowing an efficient use of the available computer resources. In the first step, 250 lowest states, below some 5 MeV of excitation energy, were calculated without truncations within a full major shell $0f_{5/2}-1p-0g_{9/2}$ for both protons and neutrons. The wave functions of the rest of the states, up to some 30 MeV, were compute…